and another 12in. uphill, would you assume the second block had gone uphill?—Oh! I would not like to give an opinion on that at all. I know nothing about the position of the building.

1097. You would not assume the one had gone uphill?—It would be something extraordinary

to see a building go uphill.

1098. If you found that the ambulatory was not in line—that some part of it was out of line uphill, and other part out of line downhill, would you assume that the part out of line uphill had gone uphill?—No; I should assume one part had gone quicker than the other.

1099. Suppose we find it out of line uphill?—If the north block moves downhill this will

move at a quicker rate than the part south of the ambulatory; so, therefore, this part will be

further up the hill and this part further down.

1100. Supposing this building moved 16in. downhill, as you are told it did, and that this other block remained stationary, or that it remained stationary up to that point, by No. 3 wall, along that ambulatory, what would be the effect at this point, between the stationary portion and

the moving portion?—It would show the cracks all through.

1101. You would expect to find big cracks there?—Yes.

1102. If you found no crack there at all would your theory be that it was compressed up?—I do not know whether it is compressed. Of course one would require to look for other causes. I do not know the nature of the ground throughout.

1103. Suppose you built one wall upon pillars and another wall a solid wall, and that they

sank equally, would the effect on both walls be the same?

Mr. Gore: That is supposing a case that does not exist: this is pure fancy.

Mr. Blair: I am putting my question in my own way, and I submit, in cross-examination, this is perfectly fair. Mr. Forrest has come as an expert.

Mr. Gore: You are asking him upon a point which does not exist.

1104. Mr. Blair.] I am saying, supposing a building is erected, as hundreds are—supposing one part of the building is put on pillars and another on a solid wall, and they sink the same, will the effect on the superstructure be the same?—They are bound to be the same.

1105. If you take away a pillar from the end of a wall, or if you only lower it over a small portion of the wall, will the effect be the same as subsidence over the whole?—No: you are taking your bearing-power away at a certain point, and therefore it would not be equal.

1106. You said, if I recollect aright, that if these pillars settled down in that would show a

crack of 4in. at one end and 4in. at the other?—Yes.

1107. Well, we will assume that this is a vertical section of a column—a column 10ft. wide and 40ft. high. Suppose the front of the column settles down $\frac{1}{2}$ in., what will the effect of that be upon the 40ft. wall?—Do you mean in the length?

1108. In the height?—It would be žin. out of plumb.

1109. If you found there was evidence of a slip away behind the building, here, and it was supposed to exert pressure upon the building here—that is, the colonnade portion of the north block these three walls being parallel—if you applied pressure to these walls horizontally, what would the effect be?—You would bring them all forward.

1110. Would the back wall be pressed against the other walls?—The two walls, the back and

the middle wall, would come equally the same as the one wall.

1111. They would come the same, being tied together. What would the result, then, be between the back wall and the front wall, where there are no ties?—They would all be brought forward. These are all concrete, and, being all concrete, these are all tied together. The whole four would go together.

1112. Then there would be evidence of compressive strains at the junction of the back wall with the cross-walls, or the cross-walls with the middle wall?—There would be compressive strains

- 1113. If, instead of compressive strains, you found large cracks between the partitions and the back wall?—I should expect to find them, because this has come forward 16½in., and the whole affair is twisted.
- 1114. That is a different question. It is not your theory that I am working upon. These three walls being parallel, you say the back wall and the middle wall would be pressed against the front wall?—I consider they would all go together.

1115. And you distinctly stated there would be evidence of compressive strains at the junction of the cross-walls with the others?—Yes.

- 1116. Suppose you found at the junction of the cross-walls, the back walls a large open crack, getting wider as you got to the top, what would you say?—I should say it was just the action of
- 1117. Leaving that out altogether: it is not your theory I am working on. I want to get from you, as an expert, evidence for or against certain theories that have been propounded. Leave your own theory. If you find this crack there, would you still say that the back wall had been pressed on the front?—If the cracks remain at the junction of the cross-walls with the back wall, then the pressure is taken off the cross-walls.

1118. How could these tension-cracks result from compressive strains?—I cannot account for

1119. You cannot account for it?—No.

1120. Supposing you take three parallel walls, and find the back wall cracked, and a crack existing between the back wall and the other walls, you would still attribute that to pressure from behind against the back wall?—I would attribute it to some moving action that has taken place out of sight, and I cannot account for it till I know what that is. If this north wing has moved bodily forward, and the other remains stationary, it is evident that something is working that we know nothing about, and what that something is I do not know.

1121. Suppose these walls were pulled away by a force from outside from the back wall, would

9—H. 7.