and effectiveness, and the movements often keep time to music, and are well calculated to assist physical development. Many of the schools include these exercises in the popular entertainments now frequently got up for the benefit of school funds, and they make a very pretty display. In some instances M. de Mey complains of the difficulties he experiences in getting the pupils to provide themselves with the necessary clubs or poles. Of course it is impossible for him to do more than generally direct the work, and on the teachers the brunt of the work necessarily falls. They

Drawing is under the control of the Director of the Wellington Technical School, Mr. Riley, who has issued a syllabus on the lines of the amended code, specifying exactly the work recommended for each standard in the several subjects—freehand, scale, geometry, and object. This programme is approved by us, and is in general use. There has been some falling-off in the freehand work in the schools during the past year; but, on the other hand, geometry, scale, and especially drawing from the object, show much progress. Most of the teachers of any standing have passed the second-grade drawing examination, and very many of our pupil-teachers hold full second-grade certificates. As a consequence, the instruction under so able a director as Mr. Riley is becoming very satisfactory. A close inspection of the work of large classes appears, however, to reveal the fact that the aims of teachers are often too ambitious, especially in freehand drawing, and that too difficult exercises are given. It almost goes without saying that a simple freehand exercise very accurately and very neatly done is a far better result in every way than a difficult exercise rudely drawn. It must always be borne in mind that in freehand work the main thing is the ability to make a clean, light, fine, straight or evenly-curved line. Scores of the class drawing-books still show lines so heavily dug in that when once drawn they can never be erased. At the annual examination in first-grade drawing the following were the results of 4,750 papers by 2,545 individual candidates: Freehand, 557 passes out of 1,377 papers; model, 143 passes out of 350 papers; geometry, 743 passes out of 1,164 papers; scale, 460 passes out of 859 papers: total, 1,903 passes out of 3,750 papers. This is a small decrease in the passes of last year, but a higher standard was looked for. Of course the number examined in the year is not an estimate of the whole work of the schools. Many children now on the books have previously passed in one or more sectional subjects, and of thes

CERTIFICATES ISSUED IN FIRST GRADE.

		Freehand.	Model.	Geometry	у.	Scale.	Total.
1884		81	 	 			 81
1885		128	 	 105			 233
1886		232	 	 284			 516
1887		170	 57	 103		72	 402
1888		302	 47	 154		108	 611
1889		403	 91	 477		147	 1,118
1890		689	 75	 821		381	 1,966
1891	• • •	557	 143	 743		460	 1,903
Totals		2,562	 413	 2,687		1,168	 6,830

The greatest features of the past year's work, which indicate the most marked improvement in educational work, are the arrangements now completed for the advancement of practical scientific teaching. They may be conveniently classed under three heads—(1) Kindergarten occupations for the lower classes; (2) object-lessons on a scientific basis for the middle classes; and (3) experimental-science instruction proper for the upper classes of all schools. To carry this full programme out successfully the teachers have been consulted and their wishes studied in the matter. They have readily and enthusiastically entered into the plan, which we all conceive to be conducive to the spread of more wholesome, more interesting, more educative, more digestive, and far more practically useful knowledge than much of that hitherto imparted. And first as to the kindergarten occupations. We have prescribed four—mat-plaiting, stick-building, modelling in clay, and colour-teaching—to be taught in all schools to infants, and in small schools to Standard I. children. The Board has readily granted money for the full supply of necessary mats, needles, sticks, metal joints, clay, boards, tools, beads, coloured films, &c., to neet the programme. All schools are now supplied, printed instructions have been issued, a kindergarten mistress has visited most of the schools to give directions, a reserve supply of material is at hand, and the whole is now in fair working order. In point of fact, many of the schools, especially the three large infant schools, have done some excellent work. Another year will probably lead to much improved work in many of the other schools; and teachers are earnestly requested to steadily and persistently pursue the work, for it is invaluable as a training for the hand and eye, and as the first step to the cultivation of observation and thought, which the object-lesson work and science teaching will develop.

Secondly, as regards the object-lesson work of Standards II. and III. We retain the name only for convenience. This work is now held to be the inculcation of the first principles which underlie all scientific knowledge, given in so simple a form, with homely experiments of an attractive character, that the pupil imperceptibly gets a clear understanding and grasp of the great truths of science. Such subjects as the following are taken, the head teacher directing the class teachers how to treat the subject, and providing them with lamp, test-tube, materials, &c., to perform the simple experiments pointed out as necessary to illustrate them: Atoms, adhesion, cohesion, hard and soft, light and heavy, specific gravity, heat, liquids, air, carbon-dioxide, metals, water, pressure, solvents, expansion, balloon, attraction, mixing colours, clay, oil, soap-bubble, evaporation, carbon, sulphur, phosphorus, plain and solid figures cut out of paper. Rick's "Object-lesson Book" is found a useful guide, both the first and the second series; but the book is by no means closely followed in