say 250, it should have an area of from 60,000 to 65,000 square feet, which is one and a half times the floor space at present available. A school of this enrolment and size would be comparable with well-known schools of engineering in Great Britain.

43

172. Something must be done immediately. If the present conditions are allowed to continue, the quality of graduates must decline. It has been suggested that a move to temporary quarters within easy cycling distance of the present buildings would tide the school over the next twenty years or so, when permanent buildings could be constructed. The Committee does not favour this proposal. The labour costs for temporary buildings are so little less than those for permanent buildings of a type suitable for a modern engineering school that it is doubtful whether the double move could be justified. The Committee thinks, therefore, that large-scale rebuilding of the Canterbury school in temporary buildings should be avoided, and has reached this conclusion with a full knowledge of the fact that rebuilding on the north block, which is at present occupied by residential properties, will be out of the question for many years. The weight of argument is clearly in favour of permanent building on a new and spacious site.* Proximity to main lines of communication should, of course, be kept in mind.

RECOMMENDATION-

That the question of building a new engineering school at Canterbury be considered to be one of the greatest urgency, that steps should be taken to secure a suitable site and that the building be given a high priority.

(5) SHOULD THERE BE TWO SCHOOLS OF ENGINEERING?

173. In Section 8 it was shown that the immediate aim should be an output of 75 graduates a year and that to maintain this output a total of about 300 student-places would be necessary. This number is considerably smaller than the number of student-places at present available. Table G will make this obvious.

	_				Canterbury.	Auckland.	Total.
First professional year					79	44	123
Second and subs	sequent p	rofession	al years—	-			
Civil					98	24	122
Electrical					71	6	77
Mechanical					27	24	51
Chemical	• •				8		8
					283	98	381
Non-degree students				73	9	82	
Total student-places				356	107	463	

Table G.—Distribution of Students, by Schools, Courses, and Years, 1948

^{174.} It will be seen from Table G that, even leaving out of account the 82 non-degree students, the schools at present accommodate 81 students in excess of the number which the Committee considers reasonable.

^{*} Since this report was written the College Council has asked the Government to acquire a new site for this purpose.