During 1899 the average number of students was fifty, and the class-attendance 143. This shows a substantial increase over 1898, when the average number of students was forty-three, and the class-attendance only 108. During the first term of the present year the attendance has somewhat decreased, the number of registered students being at present forty-five, and the class-attendance 127. The chief cause of the diminution seems to be the war-fever, quite a number of last year's students having volunteered for service in South Africa. The attendance next term will almost certainly be much larger, as some nine or ten young men have already intimated their intention of joining the school at the beginning of next term.

The following table shows the attendance at the various classes during the past twelve

months:-

Table of Attendances for the Year ending 31st March, 1900.

Name of Subject.						1899.		
					First Term.	Second Term.	Third Term.	First Term.
Mining Mathematics Theoretical surveying Practical surveying Mineralogy and geology Theoretical chemistry Practical chemistry Assaying Metallurgy Metallurgy					13 10 14 8 12 21 24 30 11	17 12 18 11 8 14 26 35 14	13 12 8 7 3 11 22 31 10 5	9 22 8 9 22 23 25 6
Drawing Totals Saturday science class Total class-attendance Individual registered			•••		148 148 49	159 159	122 122 46	127 26 153 45
Total individual stude			•••		49	55	46	71

The following is a summary of the work done during 1899 in the various classes:—

Mining and Mining Geology.—(a.) The sinking of shafts, construction of main drives, &c.

(b.) Timbering and support of mine-workings. (c.) Drainage of mines, pumping appliances, &c.

(d.) Hauling and winding. (e.) Mine-ventilation. (f.) Tapping water in mines; modes of constructing dams. (g.) Blasting and explosives. (h.) Strength of materials. (i.) Nature and mode of occurrence of mineral deposits. (j.) Formation of lodes. (k.) Dynamics of lodes. (l.) Dredging rivers and allowed lights, the different types of dradges, their construction mode of working saving rivers and alluvial flats—the different types of dredges, their construction, mode of working, saving the gold, &c. (m.) Hydraulic sluicing.

Text-books: Le Neve Foster's "Ore and Stone." Mining—Gordon's "Mining and Engi-

Mathematics.—(a.) Arithmetic—the whole subject. (b.) Algebra—elementary rules; simple equations; factors; use of formulæ; problems. (c.) Geometry—Euclid, Book I., props. 1–26.

Text-books: Hudson and Smith's "Arithmetic"; Hall and Knight's "Elementary Algebra";

Theoretical and Practical Surveying.—Nature and use of logarithms; the trigonometrical ratios; solution of triangles; adjustments of theodolite, miners' dial, and dumpy level; chaining; traversing; connecting underground and surface meridians; calculation of traverses; plotting

survey; plan-drawing.

Mineralogy and Blowpipe Analysis.—(a.) The six crystallographic systems. (b.) Physical and chemical properties of minerals. (c.) Use of the blowpipe; tests for simple minerals.

(d.) Classification of minerals.

Text-book: Collins's "Mineralogy."

Text-book: Collins's "Mineralogy."

Geology.—(a.) Physical and dynamical geology. (b.) Classification and mode of formation of rocks. (c.) The geological periods.

Text-book: Boulger's "Geology."

Theoretical Chemistry.—Fundamental principles; the non-metallic elements; the alkali metals.

Text-books: Roscoe's "Elementary Chemistry"; Jago's "Inorganic Chemistry."

Practical Chemistry.—(a.) Qualitative tests for metals and acids. (b.) Separation of the metals. (c.) Manipulation of chemical apparatus, and the various operations connected with chemical analysis, such as solution, precipitation, filtration, washing, drying, ignition, weighing, (d.) Analysis of simple substances.

Text-book: Park's "Assaying and Practical Chemistry.

Assaying.—(a.) Furnaces, materials, and appliances. (b.) Dry assays of gold, silver, mercury, tin, lead, copper, and antimony ores. (c.) Assay of gold and silver bullion. (d.) Problems and calculations. (e.) Gravimetric assays of silver, lead, antimony, bismuth, copper, iron, zinc,