THURSDAY, 22ND AUGUST, 1907. Magistrate's Court, Auckland.

The Right Hon, the Minister's direction to Mr. District Judge Kettle to hold the inquiry under section 48 of "The Government Railways Act, 1900," and notice appointing place and time for inquiry, read as follows:-

To Mr. District Judge Kettle. Wellington, 20th August, 1907. You are hereby appointed and directed to hold an inquiry under section 48 of "The Government Railways Act, 1900," to ascertain the cause of the accident at Ngatira, on the Rotorua Railway line, on the 3rd instant.

J. G. WARD, Minister for Railways.

Public Notice.

An inquiry, under "The Government Railways Act, 1900," into the cause of the railway accident which occurred on the Rotorua Railway line on the night of the 3rd August, 1907, will, by direction of the Right Hon. the Minister for Railways, be held by me at the Magistrate's Court House (upstairs Court-room) to-morrow, at 10 a.m. Dated this 21st August, 1907. CHAS. C. KETTLE,

Judge of District Court, and S.M.

Upon inquiry opening-

Mr. Prendergast appeared on behalf of the Railway Department.

Messrs. F. E. Baume, K.C., and F. Earl appeared on behalf of the locomotive and traffic employees (instructed by Amalgamated Society of Railway Servants).

The Inspector of Police at Auckland and Thames intimated that they did not wish to be pre-

Inquiry adjourned at request of counsel until 11 a.m. on the 23rd instant at St. Andrew's Hall, Lower Symonds Street.

FRIDAY, 23RD AUGUST, 1907.

This deponent, Alfred Luther Beattle, being sworn saith:-

I am Chief Mechanical Engineer for the New Zealand Government Railways, and have occupied that position for seven years, with a total service of thirty years. I know locality where accident occurred. I produce a copy of New Zealand Railways Rules and Regulations (Exhibit No. 1), also Appendix to Working Time-tables (see pages 6 and 25) (Exhibit No. 2). I also produce copy of instructions issued to trainmen, as to using Westinghouse air-brake (Exhibit No. 3). I also produce copy of Westinghouse Air-brake and descriptions (Exhibit No. 4). The rules and instructions are issued to all guards, drivers, and firemen, and it is their duty to make themselves familiar with them. I produce copy of diagram showing principle of Westinghouse automatic air-brake (Exhibit No. 5). It shows principle correctly but certain details are left out. I produce plan showing section of railway from where train was detached to the point where train ran over the embankment (Exhibit No. 6). It shows the grade and curves. About two miles beyond where the engine was detached is a comparatively level station-yard, but for two miles beyond that the same grade exists. The water-tank is two miles and a quarter further ahead of where the engine was detached. It is a continuous down grade from where the engine stopped at Ngatira. In the ordinary course of things there was no necessity to apply the brakes. The Ngatira Railway-station is a quarter of a mile of level. From Ngatira to Putaruru there is about two miles of 1 in 364 down grade. Starting a train from Putaruru there was no necessity to use the brakes for down grade. I also put in a diagram showing the length, weight, and general arrangement of the train as it left Putaruru (Exhibit No. 7). The whole of that train was equipped with the Westinghouse quick-action automatic brake—the best known to the railway world. It was fitted from one end to the other. In addition to that, every vehicle, including the engines, were fitted with hand-brakes also, without exception. The guard's van had a screw brake which applied brake-locks to every wheel of the van. The passenger had a similar brake which applied a brake-block to every wheel. Each of the trucks had an ordinary hand-brake in addition to the Westinghouse brake. The ordinary hand-brake puts a brake on one wheel only. The hand-brakes would not necessarily be all on the same side of the train. The front van had a screw brake similar in every respect to that on guard's van. The tender had also a screw brake which applied eight brake-blocks. The front engine was similarly equipped to the tender but applied to six wheels. The weight behind the engines was about 2261 tons. The total length of the train including engines was 479 ft. Approximately the load for the front engine would be about 100 tons, and the load for the second engine would be about 140 tons. The second engine was the stronger of the two by reason of its design. It was made in 1878 by the Baldwin Locomotive Company of Philadelphia, and was placed on the New Zealand railways about the end of 1878 or beginning of 1879. Within the last halfdozen years the boiler has been renewed—that is, the boiler now in it is an absolutely new one, built in our workshops at Christchurch. The various portions of running-gear, wheel tires and axles, and working-parts generally have been from time to time refitted and renewed as found necessary, so that the original identity of that engine has been largely lost by reason of those refittings. The engine has been practically rebuilt. That engine has not been on this section more than about three months. It came from Hurunui-Bluff Section. It was the duty of Mr. A. V. McDonald, Locomotive Engineer, to ascertain its condition when received and its condition when turned out of Railway Workshops at Newmarket. The engine came up in pieces, and was re-erected at New-