The intervals between high waters are :-

) times fference.
h.
.37747
206012
-

Hence, in forming the column for N_2 the initial value -2.6272 is set on the calculating-machine and ten times the difference (= 2.37747) added continuously. When the values in the N_2 column exceed the interval between the N_2 high waters, an adjustment is made as shown at tide No. 70, where the interval 12.6583 is subtracted. This always keeps the intervals between the M_2 and N_2 high waters small, and is a convenience when adjusting the N_2 tide in place on the table as described below. In a similar way the other columns are filled up.

Schedule No. 2.—Auckland, 1912.

Tide No.	N ₂	S ₂	K ₁	M ₄	K ₂	$ u_2$
	h.	h.	h.	h.	h.	h.
0	- 2.63	+[4.73	- 5.40	+ 0.42	- 1.74	-2.27
10	-0.25	+ 0.52	- 9.93	+ 0.42	-6.27	-0.22
20	+ 2.13	- 3.69	$ \begin{array}{r} -14.47 \\ K_1 = 23.93 \end{array} $	&c.	- 10.80	+ 1.83
30	+ 4.51	- 7.89	+ 9·46) + 4·93	••	- 15.34)	+ 3.89
					$\frac{\mathbf{K_2} = 11.97}{-3.37}$	
40	+ 6.88	$\begin{vmatrix} -12 \cdot 10 \\ S_2 = 12 \cdot 00 \end{vmatrix}$	+ 0.40	• •	- 7.90	+ 5.94
50	. 0.96	$ \begin{array}{r} -0.10 \\ -4.30 \end{array} $	£4.19		10.44	. 0.00
50	+ 9.26	- 4.50		••	$\mathbf{K_2} = \frac{12.44}{11.97}$	+ 8.00
00	11.04	0.51	0.00		-0.47	1
60	+ 11.64	-8.51	-8.67	• •	- 5.00	+ 10.05
70	$N_2 - 12.66$	$S_2 = 12.00$	$ \begin{array}{c} -13.20 \\ \mathbf{K_1} = 23.93 \end{array} $	• •	- 9.54	+ 12·10
	+ 1.36	-0.72)	+ 10.73)			
80	+ 3.73	-4.92	+ 6.20	• •	-14.07 $K_2 = 11.97$	$+ 14.16$ $v_2 = 25.26$
			,		$-2\cdot\overline{10}$	-11.10
90	+ 6.11	-9.13	+ 1.67	• •	- 6.64	- 9.04
100	+ 8.49	-13.33	- 2.87	• •	- 11.17	− 6.99
&c.		$\frac{\mathbf{S_2} = 12 \cdot 00}{-1 \cdot 33}$				

On a table 12 ft. by 3 ft. a sheet of tracing-cloth is laid down, and on the cloth at intervals of 6.2103 in. lines are drawn across to represent, on a scale of 1 in. to 1 hour, the times of M_2 high and low waters. Parallel to and 1 in. distant from these lines other lines are drawn to represent the times 1 hour before and 1 hour after the M_2 high- and low-water times. (See Fig. 3.) On separate sheets of tracing-cloth 14 ft. long by 8 in. wide the N_2 , S_2 , K_1 , M_4 , K_2 , and ν_2 tides are drawn to a scale of 1 in. to 1 hour longitudinally and 5 in. to 1 ft. transversely. To set these curves in their correct relative positions reference must be made to Schedule No. 2. Thus, for N_2 it is seen that its H.W. takes place at -2.63h., that is, 2.63 hours before M_2 high water; accordingly the N_2 curve is placed so that its H.W. is 2.63 in. to the left of the M_2 H.W. At the other end of the table, at the 10th M_2 H.W., the N_2 H.W. is checked from Schedule No. 2, and is 0.25h. earlier than the M_2 H.W. In a similar manner the curves of the other tides are arranged and clamped to the table.

The ordinates of the curves are next measured graphically on strips of paper, at -1h., 0h., and +1h. from each M_2 high and low water; the transverse lines on the lowest sheet of tracing-cloth enable this to be readily done, and the resulting sum shows the correction to the M_2 curve. In Fig. 2 are shown portions of the M_2 curve drawn to scales of 2 in. to 1 hour and 5 in. to 1 ft.—*i.e.*, the same scale for heights as the other curves. Thus, in the case of the 155th low water, A C E represents part of the M_2 curve and AB, CD, and EF are the corrections due to the other tides obtained graphically from Fig. 3. The points B, D, and F then represent points on the curve of the tide, and it remains to determine the time and height of low water. For this purpose a series of template curves $h = (H_m + 0.2 k) \cos i$ are drawn on separate pieces of tracing-cloth. h is the ordinante of the curve; H_m is the semi-range of the M_2 tide; k is an integer from +7 to -7; k is the speed of the M_2 tide in degrees per mean solar hour.

One of the templates is now selected, and, keeping the line G H parallel to the hour-lines, the curve is adjusted until it passes through the points B, D, and F as shown in red on Fig. 3. The point G then represents the position of low water, and the correction to the M₂ low-water time is obtained