- 2. In treating ore highly charged with sulphide in amalgamating-machines, describe the treatment it would have to undergo to secure a large percentage of the bullion the ore contains.
- 3. What is meant by concentrating-machinery? How is concentration effected? Describe the different machines and appliances used in this Dominion, their capacity, and the power required to work them.
- Subject C.—The Use of Quicksilver, and Methods of using it in connection with the Extraction of Gold and Silver from Ores.
  - 1. How do you ascertain when quicksilver is not in a fit state for amalgamation?
  - 2. If quicksilver contained copper, lead, and zinc, or base metals, how would you purify it so as to render it in a fit state to treat auriferous ore?
  - 3. How is gold recovered from amalgamating-plates? State the process it undergoes before it becomes a marketable commodity. Describe fully.
  - 4. What effect has a current of electricity on impure mercury, and how is it applied?

Subject D.-Cyanide, Chlorination, and other Chemical Processes of recovering Gold and Silver from Ores.

- 1. How is the strength of KCN solutions ascertained? Describe fully.
- 2. What quantity of a 15-per-cent. solution would be required to make up a sump solution of 0.009 per cent. to a working solution of 0.21 per cent. KCN?
- 3. How many pounds of crude cyanide containing 71 per cent. KCN would it take to make up a sump solution of 0.015 per cent. to a working solution of 0.3 per cent. KCN?
  4. In treating pulverized ore with solutions of KCN, how do you ascertain the best percentage of
- KCN solution to use, and the length of time it requires to be under treatment?
- 5. In treating fine slimes with a solution of KCN, describe fully the treatment so as to ensure the highest percentage of bullion being extracted.
- 6. If any of the workmen showed signs of hydrocyanic-acid poisoning, what steps would you take to relieve the sufferer?
- 7. How is the bullion recovered from KCN solutions? Describe fully the processes from the time the solutions leave the vats until the bullion is made into a marketable commodity.
- 8. How is gold extracted from pulverized ore by chlorination (a) by the Plattner process, (b) by the Newberry-Vautin process, (c) by the process adopted by the Mount Morgan Company in Queensland? How is the gold from chlorination recovered and made into a marketable commodity?
- 9. How are concentrates of iron, copper, and arsenical pyrites treated before being submitted to chlorination?

## Subject E.—The Sampling and Testing of Ores.

- 1. Describe the principles upon which automatic ore-samplers work.
- 2. Sketch, with dimensions, a complete assay office used for assay-work in connection with a gold-mill and cyanide plant, showing the arrangement of the different rooms, positions of furnaces, benches, &c.
- 3. How would you distinguish between the following minerals in an ore:—

  - (a.) Galena and stibnite.(b.) Iron-pyrites and arsenical pyrites.
  - (c.) Calcite and lead-carbonate?
- 4. Describe briefly the assay of a pure galena for lead, gold, and silver, by fire-method only.
- 5. State in detail how gold bullion is assayed for gold, silver, and base respectively.
- 6. A gold-bullion bar is found by assay to contain gold 9520 fine and silver 413 fine: what is its value per ounce for gold and silver respectively, assuming pure gold to be worth 85s. and pure silver 26d. per ounce?
- 7. How would you determine the presence of acid salts, likely to be cyanicides, in a sample of gold-ore tailings?
  - Subject F.—A Knowledge of Arithmetic and the Method of keeping Battery Accounts.
- 1. How many ounces of gold are there in a sphere of 5 ft. in diameter, taking the specific gravity of gold to be 19?
- 2. The value of bullion from the treatment of ore was £5,678, which contained gold of 0.3265 fine, the balance being silver: show the value of the gold and silver in the bullion, taking gold at £4 3s per ounce and silver at 2s. 5d. per ounce.
- 3. Give the horse-power of a turbine water-wheel to work a crushing-battery of 40 heads of stamps of 11 cwt. each, making 100 drops per minute with 6 in. drop; the wheel to be under a head of 100 ft., and to give 70 per cent. of the theoretical velocity of the water.
- 4. Divide 0.0021 by 12, and extract the cube root of the quotient arithmetically.